Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
JNMA J Nepal Med Assoc ; 62(270): 155-157, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38409970

RESUMO

Zellweger syndrome is an autosomal recessive disease within the spectrum of peroxisome biogenesis disorder manifesting in the neonatal period with profound dysfunction of the central nervous system, liver and kidney. Common clinical presentations include hypotonia, seizure, hepatomegaly, craniofacial dysmorphism and early death. Mutation in one of the PEX genes coding for a peroxisome assembly protein creates a functionally incompetent organelle causing accumulation of very long chain fatty acids in various organs. Here we report the case of a 5-month-old male presented at birth with hypotonia, poor feeding, gross congenital anomalies and later during early infancy with failure to thrive, several episodes of seizures, aspiration due to feeding difficulties and recurrent severe pneumonia. A whole genomic sequencing brought us to the final diagnosis of Zellweger syndrome. Despite an absence of treatment options, prompt diagnosis of Zellweger syndrome is important for providing appropriate symptomatic care, definitive genetic testing and prenatal counselling. Keywords: case reports; mutation; neonate; Zellweger syndrome.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Recém-Nascido , Humanos , Masculino , Lactente , Síndrome de Zellweger/diagnóstico , Síndrome de Zellweger/genética , Hipotonia Muscular/genética , Transtornos Peroxissômicos/genética , Testes Genéticos , Mutação
2.
Biol Direct ; 19(1): 14, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365851

RESUMO

Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial ß-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.


Assuntos
Transtornos Peroxissômicos , Peroxissomos , Humanos , Peroxissomos/genética , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Mitocôndrias/metabolismo , Oxirredução
3.
Mol Genet Genomic Med ; 12(1): e2315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962062

RESUMO

BACKGROUND: Peroxisome biogenesis disorders (PBDs) are caused by variants in PEX genes that impair peroxisome function. Zellweger spectrum disorders (ZSDs) are the most severe and common subtype of PBDs, affecting multiple organ systems due to peroxisomal involvement in various metabolic functions. PEX13 gene variants are rare causes of ZSDs, with only 21 cases reported worldwide and none in China. METHODS: We describe an infant with biochemically and molecularly confirmed ZSDs due to variants in the PEX13 gene, identified by whole exome sequencing and validated by Sanger sequencing. The patient's treatment and prognosis were followed up. We also reviewed the literature on previously reported cases with PEX13 variants. RESULTS: The patient had severe hypotonia, seizures, hepatic dysfunction, failure to thrive, and dysmorphic features. Serum analysis revealed elevated levels of very long-chain fatty acids (VLCFA), phytanic acid, and pipecolic acid. We detected a novel homozygous missense variant c.493G>C (p. Ala165Pro) in the PEX13 gene (NM_002618.3), which caused severe clinical manifestations and was inherited from the consanguineous parents. The patient died at the age of 14 months. CONCLUSION: We report the first case of ZSDs due to the PEX13 variant in China. Our findings broaden the mutational spectrum of the PEX13 gene and indicate that missense variants can lead to severe ZSDs phenotypes, which has implications for genotype-phenotype correlations and genetic counseling.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Lactente , Humanos , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo , Transtornos Peroxissômicos/genética , Mutação de Sentido Incorreto , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Mol Genet Metab ; 140(3): 107680, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567036

RESUMO

The peroxisome is an essential eukaryotic organelle with diverse metabolic functions. Inherited peroxisomal disorders are associated with a wide spectrum of clinical outcomes and are broadly divided into two classes, those impacting peroxisome biogenesis (PBD) and those impacting specific peroxisomal factors. Prior studies have indicated a role for acylcarnitine testing in the diagnosis of some peroxisomal diseases through the detection of long chain dicarboxylic acylcarnitine abnormalities (C16-DC and C18-DC). However, there remains limited independent corroboration of these initial findings and acylcarnitine testing for peroxisomal diseases has not been widely adopted in clinical laboratories. To explore the utility of acylcarnitine testing in the diagnosis of peroxisomal disorders we applied a LC-MS/MS acylcarnitine method to study a heterogenous clinical sample set (n = 598) that included residual plasma specimens from nineteen patients with PBD caused by PEX1 or PEX6 deficiency, ranging in severity from lethal neonatal onset to mild late onset forms. Multiple dicarboxylic acylcarnitines were significantly elevated in PBD patients including medium to long chain (C8-DC to C18-DC) species as well as previously undescribed elevations of malonylcarnitine (C3-DC) and very long chain dicarboxylic acylcarnitines (C20-DC and C22-DC). The best performing plasma acylcarnitine biomarkers, C20-DC and C22-DC, were detected at elevated levels in 100% and 68% of PBD patients but were rarely elevated in patients that did not have a PBD. We extended our analysis to residual newborn screening blood spot cards and were able to detect dicarboxylic acylcarnitine abnormalities in a newborn with a PBD caused by PEX6 deficiency. Similar to prior studies, we failed to detect substantial dicarboxylic acylcarnitine abnormalities in blood spot cards from patients with x-linked adrenoleukodystrophy (x-ald) indicating that these biomarkers may have utility in quickly narrowing the differential diagnosis in patients with a positive newborn screen for x-ald. Overall, our study identifies widespread dicarboxylic acylcarnitine abnormalities in patients with PBD and highlights key acylcarnitine biomarkers for the detection of this class of inherited metabolic disease.


Assuntos
Adrenoleucodistrofia , Transtornos Peroxissômicos , Recém-Nascido , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/genética , Biomarcadores , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Methods Mol Biol ; 2643: 469-500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952207

RESUMO

During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.


Assuntos
Ácidos Graxos , Transtornos Peroxissômicos , Animais , Camundongos , Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Transtornos Peroxissômicos/patologia
6.
Horm Res Paediatr ; 96(4): 439-445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649687

RESUMO

INTRODUCTION: There are two major categories of peroxisomal disorders (PDs): peroxisomal biogenesis disorders (PBDs) due to defects in peroxisomal (PEX) genes and deficiency of other peroxisomal enzymes (such as D-bifunctional enzyme deficiency due to HSD17B4). PDs are characterized by abnormal elevations of very-long-chain fatty acids (VLCFA). We aimed to evaluate the clinical phenotype of adrenal insufficiency in patients with PD and to assess any genotype-phenotype correlations with adrenal insufficiency. CASE PRESENTATION: We performed a retrospective electronic medical record review at a single university medical center, of data over 12 years and identified 7 patients with PD. Of the 7 patients identified, 6 patients had a diagnosis of PBD and one had a single peroxisomal enzyme deficiency, HSD17B4. The average age of the patients at diagnosis were 0.61 ± 0.66 years. Four patients (66.7%) had primary adrenal insufficiency: 3, out of the 4, patients had elevated baseline ACTH. Three patients failed to have increased response after the Cortrosyn™ stimulation test. Three patients were on daily hydrocortisone replacement, and 1 patient was on stress-dose hydrocortisone only as needed. Specific genetic variant analysis revealed that all the 3 patients with PBD and adrenal insufficiency who were on steroid supplementation had the compound heterozygous pathogenic variant in exon 13 of PEX1 c.2097dupT (p.Ile700Tyrfs*42) and c.2528G>A (p.Gly843Asp), while the 1 patient with peroxisomal enzyme deficiency and adrenal insufficiency had compound heterozygous pathogenic variants in HSD17B4 c.1369A>T (p.Asn457Tyr) and c.1210 - 1G>A (splice acceptor). Two of these patients with PEX1 variants also required mineralocorticoid supplementation. The 3 PBD patients without adrenal insufficiency did not have a PEX1 variant. DISCUSSION/CONCLUSION: Primary adrenal insufficiency is common in patients with PD. Based on our data, patients with the compound heterozygous PEX1 pathogenic variants of exon 13 (c.2097dupT and c.2528G>A) tend to have adrenal insufficiency. Aldosterone deficiency, though rare, can occur in PD.


Assuntos
Doença de Addison , Insuficiência Adrenal , Transtornos Peroxissômicos , Humanos , Hidrocortisona , Estudos Retrospectivos , Insuficiência Adrenal/tratamento farmacológico , Insuficiência Adrenal/genética , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/genética , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Membrana/genética
7.
Biol Chem ; 404(2-3): 209-219, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36534601

RESUMO

For the biogenesis and maintenance of peroxisomes several proteins, called peroxins, are essential. Malfunctions of these proteins lead to severe diseases summarized as peroxisome biogenesis disorders. The different genetic background of patient-derived cell lines and the residual expression of mutated PEX genes impede analysis of the whole spectrum of cellular functions of affected peroxins. To overcome these difficulties, we have generated a selected PEX knockout resource of HEK T-REx293 cells using the CRISPR/Cas9 technique. Comparative analyses of whole cell lysates revealed PEX-KO specific alterations in the steady-state level of peroxins and variations in the import efficacy of matrix proteins with a Type 2 peroxisomal targeting signal. One of the observed differences concerned PEX1 as in the complete absence of the protein, the number of peroxisomal ghosts is significantly increased. Upon expression of PEX1, import competence and abundance of peroxisomes was adjusted to the level of normal HEK cells. In contrast, expression of an alternatively spliced PEX1 isoform lacking 321 amino acids of the N-terminal region failed to rescue the peroxisomal import defects but reduced the number of peroxisomal vesicles. All in all, the data suggest a novel 'moonlighting' function of human PEX1 in the regulation of pre-peroxisomal vesicles.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Biogênese de Organelas , Peroxissomos , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/análise , Peroxinas/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Isoformas de Proteínas/metabolismo
8.
Mol Genet Metab ; 137(1-2): 68-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35932552

RESUMO

Impaired peroxisome assembly caused by mutations in PEX genes results in a human congenital metabolic disease called Zellweger spectrum disorder (ZSD), which impacts the development and physiological function of multiple organs. In this study, we revealed a long-standing problem of heterogeneous peroxisome distribution among cell population, so called "peroxisomal mosaicism", which appears in patients with mild form of ZSD. We mutated PEX3 gene in HEK293 cells and obtained a mutant clone with peroxisomal mosaicism. We found that peroxisomal mosaicism can be reproducibly arise from a single cell, even if the cell has many or no peroxisomes. Using time-lapse imaging and a long-term culture experiment, we revealed that peroxisome biogenesis oscillates over a span of days; this was also confirmed in the patient's fibroblasts. During the oscillation, the metabolic activity of peroxisomes was maintained in the cells with many peroxisomes while depleted in the cells without peroxisomes. Our results indicate that ZSD patients with peroxisomal mosaicism have a cell population whose number and metabolic activities of peroxisomes can be recovered. This finding opens the way to develop novel treatment strategy for ZSD patients with peroxisomal mosaicism, who currently have very limited treatment options.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Humanos , Mosaicismo , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo , Mutação , Fibroblastos/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxinas/genética , Lipoproteínas/genética
9.
Mol Cell ; 82(12): 2228-2235, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714584

RESUMO

Metabolism is emerging as a central influencer of multiple disease states in humans. Peroxisomes are central metabolic organelles whose decreased function gives rise to severe peroxisomal diseases. Recently, it is becoming clear that, beyond such rare inborn errors, the deterioration of peroxisomal functions contributes to multiple and prevalent diseases such as cancer, viral infection, diabetes, and neurodegeneration. Despite the clear importance of peroxisomes in common pathophysiological processes, research on the mechanisms underlying their contributions is still sparse. Here, we highlight the timeliness of focusing on peroxisomes in current research on central, abundant, and society-impacting human pathologies. As peroxisomes are now coming into the spotlight, it is clear that intensive research into these important organelles will enable a better understanding of their contribution to human health, serving as the basis to develop new diagnostic and therapeutic approaches to prevent and treat human diseases.


Assuntos
Transtornos Peroxissômicos , Humanos , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo
10.
J Pediatr Endocrinol Metab ; 35(1): 11-18, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34668366

RESUMO

Peroxisomal disorders are a heterogeneous group of diseases caused by mutations in a large number of genes. One of the genetic disorders known to cause this situation is ACBD5 (Acyl-CoA binding-domain-containing-5) gene mutations that have been described in recent years. Here, we report two siblings with a novel homozygous nonsense variation (c.1297C>T, p.Arg433*) in ACBD5 (NM_145698.4) gene using Clinical Exome Sequencing (Sophia Genetics).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Membrana/genética , Mutação , Transtornos Peroxissômicos/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Audiometria , Criança , Pré-Escolar , Feminino , Humanos , Proteínas de Membrana/deficiência , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/fisiopatologia , Distrofias Retinianas/genética
11.
Biomolecules ; 11(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356630

RESUMO

Premature termination codon (PTC) mutations account for approximately 10% of pathogenic variants in monogenic diseases. Stimulation of translational readthrough, also known as stop codon suppression, using translational readthrough-inducing drugs (TRIDs) may serve as a possible therapeutic strategy for the treatment of genetic PTC diseases. One important parameter governing readthrough is the stop codon context (SCC)-the stop codon itself and the nucleotides in the vicinity of the stop codon on the mRNA. However, the quantitative influence of the SCC on treatment outcome and on appropriate drug concentrations are largely unknown. Here, we analyze the readthrough-stimulatory effect of various readthrough-inducing drugs on the SCCs of five common premature termination codon mutations of PEX5 in a sensitive dual reporter system. Mutations in PEX5, encoding the peroxisomal targeting signal 1 receptor, can cause peroxisomal biogenesis disorders of the Zellweger spectrum. We show that the stop context has a strong influence on the levels of readthrough stimulation and impacts the choice of the most effective drug and its concentration. These results highlight potential advantages and the personalized medicine nature of an SCC-based strategy in the therapy of rare diseases.


Assuntos
Códon sem Sentido , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Biossíntese de Proteínas , RNA Mensageiro , Células HeLa , Humanos , Transtornos Peroxissômicos/terapia , Receptor 1 de Sinal de Orientação para Peroxissomos/biossíntese , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
EMBO Rep ; 22(10): e51991, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351705

RESUMO

Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Humanos , Mitocôndrias/genética , Peroxinas/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
13.
Am J Med Genet A ; 185(5): 1504-1508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33586206

RESUMO

Peroxisome biogenesis disorders (PBDs) are a group of autosomal recessive disorders caused due to impaired peroxisome assembly affecting the formation of functional peroxisomes. PBDs are caused by a mutation in PEX gene family resulting in disease manifestation with extreme variability ranging from the onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults. Disease causing variations in PEX7 is known to cause severe rhizomelic chondrodysplasia punctata type 1 and PBD 9B, an allelic disorder resulting in a milder phenotype, often indistinguishable from that of classic Refsum disease. This case report highlights the variability of PEX7 related phenotypes and suggests that other than RCDP1 and late onset phenotype similar to Refsum disease, some cases present with cataract and neurodevelopmetal abnormalities during childhood without chondrodysplasia or rhizomelia. This report also underlines the importance of considering PBD 9B in children presenting with neurodevelopmental abnormalities especially if they have congenital cataract.


Assuntos
Catarata/genética , Deficiência Intelectual/genética , Transtornos Peroxissômicos/genética , Receptor 2 de Sinal de Orientação para Peroxissomos/genética , Catarata/patologia , Criança , Pré-Escolar , Doenças em Gêmeos/genética , Doenças em Gêmeos/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/patologia , Gêmeos/genética
14.
Neurol Sci ; 42(7): 2737-2745, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33123925

RESUMO

At least 14 distinctive PEX genes function in the biogenesis of peroxisomes. Biallelic alterations in the peroxisomal biogenesis factor 12 (PEX12) gene lead to Zellweger syndrome spectrum (ZSS) with variable clinical expressivity ranging from early lethality to mildly affected with long-term survival. Herein, we define 20 patients derived from 14 unrelated Egyptian families, 19 of which show a homozygous PEX12 in-frame (c.1047_1049del p.(Gln349del)) deletion. This founder mutation, reported rarely outside of Egypt, was associated with a uniformly severe phenotype. Patients showed developmental delay in early life followed by motor and mental regression, progressive hypotonia, unsteadiness, and lack of speech. Seventeen patients had sparse hair or partial alopecia, a striking feature that was not noted previously in PEX12. Neonatal cholestasis was manifested in 2 siblings. Neurodiagnostics showed consistent cerebellar atrophy and variable white matter demyelination, axonal neuropathy in about half, and cardiomyopathy in 10% of patients. A single patient with a compound heterozygous PEX12 mutation exhibited milder features with late childhood onset with gait disturbance and learning disability. Thus, the PEX12 relatively common founder mutation accounts for the majority of PEX12-related disease in Egypt and delineates a uniform clinical and radiographic phenotype.


Assuntos
Proteínas de Membrana/genética , Transtornos Peroxissômicos , Síndrome de Zellweger , Criança , Egito , Efeito Fundador , Humanos , Recém-Nascido , Mutação , Transtornos Peroxissômicos/diagnóstico por imagem , Transtornos Peroxissômicos/genética
15.
Am J Med Genet C Semin Med Genet ; 184(3): 618-630, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32866347

RESUMO

The spectrum of peroxisomal disorders is wide and comprises individuals that die in the first year of life, as well as people with sensorineural hearing loss, retinal dystrophy and amelogenesis imperfecta. In this article, we describe three patients; two diagnosed with Heimler syndrome and a third one with a mild-intermediate phenotype. We arrived at these diagnoses by conducting complete ophthalmic (National Eye Institute), auditory (National Institute of Deafness and Other Communication Disorders), and dental (National Institute of Dental and Craniofacial Research) evaluations, as well as laboratory and genetic testing. Retinal degeneration with macular cystic changes, amelogenesis imperfecta, and sensorineural hearing loss were features shared by the three patients. Patients A and C had pathogenic variants in PEX1 and Patient B, in PEX6. Besides analyzing these cases, we review the literature regarding mild peroxisomal disorders, their pathophysiology, genetics, differential diagnosis, diagnostic methods, and management. We suggest that peroxisomal disorders are considered in every child with sensorineural hearing loss and retinal degeneration. These patients should have a dental evaluation to rule out amelogenesis imperfecta as well as audiologic examination and laboratory testing including peroxisomal biomarkers and genetic testing. Appropriate diagnosis can lead to better genetic counseling and management of the associated comorbidities.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Amelogênese Imperfeita/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Unhas Malformadas/genética , Transtornos Peroxissômicos/genética , Adolescente , Adulto , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/patologia , Criança , Feminino , Aconselhamento Genético , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Unhas Malformadas/complicações , Unhas Malformadas/diagnóstico , Unhas Malformadas/patologia , Linhagem , Transtornos Peroxissômicos/complicações , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/patologia , Fenótipo , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Adulto Jovem
16.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393673

RESUMO

Peroxisomes are single-membrane organelles present in eukaryotes. The functional importance of peroxisomes in humans is represented by peroxisome-deficient peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. Defects in the genes that encode the 14 peroxins that are required for peroxisomal membrane assembly, matrix protein import and division have been identified in PBDs. A number of recent findings have advanced our understanding of the biology, physiology and consequences of functional defects in peroxisomes. In this Review, we discuss a cooperative cell defense mechanisms against oxidative stress that involves the localization of BAK (also known as BAK1) to peroxisomes, which alters peroxisomal membrane permeability, resulting in the export of catalase, a peroxisomal enzyme. Another important recent finding is the discovery of a nucleoside diphosphate kinase-like protein that has been shown to be essential for how the energy GTP is generated and provided for the fission of peroxisomes. With regard to PBDs, we newly identified a mild mutation, Pex26-F51L that causes only hearing loss. We will also discuss findings from a new PBD model mouse defective in Pex14, which manifested dysregulation of the BDNF-TrkB pathway, an essential signaling pathway in cerebellar morphogenesis. Here, we thus aim to provide a current view of peroxisome biogenesis and the molecular pathogenesis of PBDs.


Assuntos
Transtornos Peroxissômicos , Peroxissomos , Animais , Membranas Intracelulares/metabolismo , Camundongos , Peroxinas , Transtornos Peroxissômicos/genética , Peroxissomos/metabolismo , Transporte Proteico
17.
Artigo em Inglês | MEDLINE | ID: mdl-31724321

RESUMO

BACKGROUND: Peroxisome biogenesis disorder 14B (PBD14B) is an autosomal recessive peroxisome biogenesis disorder characterized clinically by mild intellectual disability, congenital cataracts, progressive hearing loss, and polyneuropathy peroxisome biogenesis disorders are genetically heterogeneous group of disorders caused by biallelic mutations in peroxin (PEX) genes. METHODOLOGY/LABORATORY EXAMINATION: DNA of the family was extracted and sequenced by whole exome sequencing. The results were validated with Sanger sequencing analyzed with Bioinformatics software. RESULTS: Sequencing result showed that the patient has carried a homozygous variant of c.277C>T of the PEX11B gene. The patient's brother has carried a homozygous variant of c.277C>T of the PEX11B gene and their variants of c.277C>T of the PEX11B gene were inherited, respectively, from his mother and father. DISCUSSION AND CONCLUSION: The homozygous variant of c.277C>T of the PEX11B gene probably underlie the disease in this child and her brother.


Assuntos
Proteínas de Membrana/genética , Transtornos Peroxissômicos/genética , Criança , Feminino , Homozigoto , Humanos , Mutação , Transtornos Peroxissômicos/diagnóstico , Sequenciamento do Exoma
18.
Adv Exp Med Biol ; 1299: 3-17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417203

RESUMO

Peroxisome is an organelle conserved in almost all eukaryotic cells with a variety of functions in cellular metabolism, including fatty acid ß-oxidation, synthesis of ether glycerolipid plasmalogens, and redox homeostasis. Such metabolic functions and the exclusive importance of peroxisomes have been highlighted in fatal human genetic disease called peroxisomal biogenesis disorders (PBDs). Recent advances in this field have identified over 30 PEX genes encoding peroxins as essential factors for peroxisome biogenesis in various species from yeast to humans. Functional delineation of the peroxins has revealed that peroxisome biogenesis comprises the processes, involving peroxisomal membrane assembly, matrix protein import, division, and proliferation. Catalase, the most abundant peroxisomal enzyme, catalyzes decomposition of hydrogen peroxide. Peroxisome plays pivotal roles in the cellular redox homeostasis and the response to oxidative stresses, depending on intracellular localization of catalase.


Assuntos
Redes e Vias Metabólicas , Peroxissomos/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Oxirredução , Estresse Oxidativo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Transporte Proteico
19.
Adv Exp Med Biol ; 1299: 45-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417206

RESUMO

Peroxisomes are presented in all eukaryotic cells and play essential roles in many of lipid metabolic pathways, including ß-oxidation of fatty acids and synthesis of ether-linked glycerophospholipids, such as plasmalogens. Impaired peroxisome biogenesis, including defects of membrane assembly, import of peroxisomal matrix proteins, and division of peroxisome, causes peroxisome biogenesis disorders (PBDs). Fourteen complementation groups of PBDs are found, and their complementing genes termed PEXs are isolated. Several new mutations in peroxins from patients with mild PBD phenotype or patients with phenotypes unrelated to the commonly observed impairments of PBD patients are found by next-generation sequencing. Exploring a dysfunctional step(s) caused by the mutation is important for unveiling the pathogenesis of novel mutation by means of cellular and biochemical analyses.


Assuntos
Transtornos Peroxissômicos , Humanos , Mutação , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Transtornos Peroxissômicos/patologia , Peroxissomos/metabolismo , Peroxissomos/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...